
75IITM Journal of Management and IT Volume 12, Issue 1 •  January-June  2021

Abstract—What if a part of aircraft could let you know 
when the aircraft component needed to be replaced or 
repaired? It can be done with continuous data collection, 
monitoring, and advanced analytics. In the aviation 
industry, predictive maintenance promises increased 
reliability as well as improved supply chain and 
operational performance. The main goal is to ensure that 
the engines work correctly under all conditions and there 
is no risk of failure. If an effective method for predicting 
failures is applied, maintenance may be improved. The 
main source of data regarding the health of the engines 
is measured during the flights. Several variables are 
calculated, including fan speed, core speed, quantity and 
oil pressure and, environmental variables such as outside 
temperature, aircraft speed, altitude, and so on.
Sensor data obtained in real time can be used to model 
component deterioration. To predict the maintenance of 
an aircraft engine, LSTM networks is used in this paper. 
A sequential input file is dealt with by the LSTM model. 
The training of LSTM networks was carried out on a high-
performance large-scale processing engine. Machines, 
data, ideas, and people must all be brought together to 
understand the importance of predictive maintenance and 
achieve business results that matter.
Keywords: Aircraft Engine Maintenance, Predictive 
Maintenance, Neural Networks, Aircraft Engines, LSTM.

I.	 INTRODUCTION 

One of the core concepts of the aeronautic industry is 
the safe and efficient operation of engines [1, 2]. A basic 
necessity is to keep aircraft engines in working order and 
to identify potential faults as soon as possible. Companies 
can track the health of engine components and built 
structures by collecting signals from sensors, thanks to 
the rapid advancement of Internet of Things technology. 
Companies can develop systems to predict component 
conditions based on the performance of IoT sensors. In 

order to fulfil their assigned mission, the components 
must be preserved or replaced before they reach the end 
of their useful life. For industries that want to develop in 
a fast-paced technological setting, predicting the life state 
of a component is critical. Recent predictive maintenance 
studies have aided industries in generating an alarm before 
components are compromised. 
Companies can maintain their operations effectively while 
reducing maintenance costs by replacing components 
ahead of time thanks to component failure prediction. 
Since maintenance directly affects manufacturing capacity 
and service quality, optimizing maintenance is a critical 
problem for businesses looking to generate additional 
revenue and remain competitive in an increasingly 
industrialized world. Components may be taken out of 
active operation until a failure happens with the help of 
a well-designed prediction method for understanding the 
current state of an engine. Efficient maintenance, with 
the aid of inspection, extends component life, increases 
equipment availability, and maintains components in good 
working order while lowering costs.
By predicting the state of the system and performing 
anomaly detection, Prognostic and Health Management 
(PHM) improves system reliability and protection [3-6]. 
Because of the widespread use of sensors, obtaining a 
large number of equipment monitoring data is relatively 
simple, making the aircraft engine maintenance prediction 
process feasible [7, 8]. Applying analytics to those data 
sources to detect patterns and trends that can guide 
maintenance strategies—delivering the right information 
at the right time in the right context to avoid failures—is 
the key to predictive maintenance. The data can also be 
used to make recommendations for potential product 
design improvements.
For determining, preparing, and executing effective 
maintenance actions for specific capital assets, a number 
of strategies are available [9]. Corrective and preventive 
maintenance are the two most common choices, according 
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to Tinga [10]. The two most common solutions are 
corrective and preventive maintenance. Corrective 
maintenance has a number of advantages, including 
maximizing asset lifespan, but it also has a number of 
drawbacks in terms of device protection and availability, 
including high spare parts inventory costs, high overtime 
labour costs, high component latency, and poor production 
availability [11]. Preventive maintenance, on the other 
hand, provides for efficient preparation of maintenance 
operations to ensure readiness and has clear safety 
advantages. Assets, on the other hand, are often replaced 
for safety considerations until they reach the end of their 
useful lives, which is inefficient economically.
There is an opportunity to step away from conventional 
preventative maintenance and toward predictive 
maintenance as the industry becomes more comfortable 
with intelligently tracking and evaluating equipment to 
assess the need for repair or replacement. Large reductions 
in unplanned downtime will save millions of dollars, keep 
planes going, and keep consumers happy.

II. 	 LITERATURE SURVEY

To forecast the remaining useful life, maintenance of the 
engines and reliability of components, recent predictive 
maintenance studies have mostly used Hidden Semi 
Markov models. Failure rates, which are described as the 
frequency of a component breaking down per hour, are 
widely used to describe Hidden Semi Markov models. 
Hidden Semi Markov models [12] are used to calculate the 
likelihood of failure transfer rates. The input layer is fed 
by features, and the feed forward neural network topology 
is mostly constructed. The network with the smallest 
validation error is chosen to represent the best result. 
When building an ANN model, the log sigmoid transfer 
function is used. The result is scaled to a value between 
0 and 1 [13]. Hochreiter and Schmidhuber published the 
first edition of LSTM in 1997 [14]. Backpropagation’s 
exploding/vanishing gradients were solved by modifying 
the network’s weights. This research paved the way for a 
number of exciting projects. The most common version 
is vanilla LSTM, which is a modification that has been 
perfected by many people [15, 16] (hereinafter referred 
to as LSTM). 
LSTMs, like regular RNNs, have a chain of repeating 
neural network modules. As compared to RNNs and 
other types of neural networks, repeating modules in 
standard neural networks have basic structures such as 
tanh and sigmoid layers; however, LSTMs have different 
repeating modules. LSTMs have four communicating 
special layers instead of a single neural network layer. 
Each layer transports an entire vector from the previous 

layer’s output to the next layer’s inputs. LSTMs have 
the option to add or delete information when passing 
through gates, which determine how much information 
to bring across levels.
The value of the sigmoid function is 1 if all information 
has been passed through the gates. As a result, the first step 
of using LSTMs is determining the amount of information 
that can be carried between states. The forget gate sheet, 
which is also a sigmoid layer, makes this decision. If this 
layer is set to 0, all information is lost. The next move 
is to decide if new details can be applied to the next cell 
state after the forget gate layer has been determined. A 
tanh layer generates new values to be applied to the state, 
while an input gate layer determines which details will be 
changed on the next layer. Furthermore, the amount by 
which the states will be changed can be determined. The 
condition is then mixed with revised and newly included 
candidates. The old state is replaced with the new state 
after this phase.

III. 	CONCLUSION

The Industrial Internet’s distinguishing advantage is 
predictive maintenance. Digital tools can monitor and 
retain historical performance for individual assets as well 
as the entire fleet, linking them to continuous real-time 
performance. Any deviation from the “normal actions” 
resulting from these baselines or the expected activity 
would raise an alarm and prompt response. Advanced 
analytics can then decide if the variance indicates a 
possible future malfunction, as well as the root cause 
and expected timeline for the malfunction to occur. 
Cost-benefit analysis of how much longer and at what 
load an object will perform before it has to be replaced 
will become the standard. This will allow airlines and 
MROs to resolve problems until they become a problem, 
reorganize workflow around scheduled maintenance, and 
prevent unplanned downtime.
This will get us closer to a future without unscheduled 
downtime, maintenance-related delays and cancellations, 
or aircraft stuck on the ground due to technical failures. 
It would greatly increase power usage and reduce the 
time we already waste doing preventive maintenance 
and servicing due to a lack of knowledge on the assets’ 
real condition.
The key is to realize the aviation industry’s digital 
future. Industrial Internet technologies allow a transition 
to streamlined efficiency and predictive maintenance, 
resulting in significant cost reductions and benefit for 
anyone involved. When data is transmitted back from 
properties to be aggregated and processed, benchmarking 
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between fleets and operators will become feasible. Airlines 
that perform better than predicted can be compensated, 
and operational anomalies can be detected and corrected. 
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