
39
Volume 11, Issue 1 ∙January-June 2020

Artificial Neural Network in Developing

Software Project Telemetry Metrics
Himanshu Sharma

CS Department, Aligarh College Of Engineering

& Technology, Aligarh, Uttrar Pradesh, India

 sharma_himanshu86@rediffmail.com

Abstract—Software development is very slow process,

expensive process & error prone usually resulting in the

products with a huge number of problems which cause serious

and major mistakes in usability, reliability, and performance. To

overcome this problem, software measurement provides a

systematically and empirical-guided approach to control and

Improve software development process. However, due to high

cost linked with “metrics collection” and the difficulties in

“metrics decision-making,” measurement is not universally

adopted by software organizations.

 However Software Project Telemetry is still one of the

finest Solutions to this problem. The Conventional approach in

software project telemetry is to use few automatic sensors to

collect all metrics & further decision making is done based on

them. But the main problem comes when it becomes very

difficult to classify the collected metrics data & that’s why if we

need trained intelligent sensor based software project telemetry,

it is ideal to use artificial neural network.

Keywords—software project telemetry, metrics collection,

metrics decision making, artificial neural network

I. INTRODUCTION

Software Development is a slow process, hours of work is

needed to frame any software .The process is expensive because

it requires support resources & lot of efforts. Also this process

is error prone because of the logic & problem solution writing is

complex, while writing long codes it is natural to be mistaken.

To overcome all these problems, and making software
development quick and easy the computer itself needed to be
smart. And the method should be opt by which one can guide
the software development process, by giving direction, how
mistakes not done and the code writing become quick also.
For all this the whole software development process should be
overlooked by a smart computer process. Now the point is
how a computer process make smart-―if the computer can
learn‖ ?

For a computer to become smart ,You can either write a
totally fixed program for it – or you can also enable the
computer to learn on its own. As we know the Living beings
do not have any programmer writing a program for
developing their own skills, which then only has to be
executed definitely. They learn by themselves – without
having the previous knowledge from any external impressions
– and thus they can solve problems better than any computers
today. What qualities are needed to achieve such a brilliant

behavior for devices like computers? Can such features be
adapted from biology?

II. NEURAL NETWORKS

There are a lot of problem categories that cannot be solved as

an algorithm. Problems those depend on many subtle factors,

for example the purchase & sale price of a real estate which our

brain can calculate approximately. Without an algorithm one

computer cannot do the same. Therefore the question to be

asked is definitely: How do we learn to explore such kind of

problems?

Exactly – we learn; a capability today’s computers obviously

do not have. Humans have a brain that can fairly learn.

Computers have some processing units and memory. They

together allow the computer to perform most complex

numerical calculations in a short time, but they are not

adaptive. If we compare computer and brain, we will note that,

theoretically, the computer should be more powerful than our

brain: It comprises 10
8

transistors with a switching time of 10
−8

seconds. The brain contains 10
12

 neurons, but these only have a

switching time of about 10
−3

 seconds. The largest part of the

brain is working continuously, while the largest part of the

computer is only passive data storage. Thus, the brain is

parallel and therefore

Table 1.1: The (flawed) comparison between brain and computer at a
glance

Performing close to its theoretical maximum, from which the

computer is orders of magnitude away (Table 1.1).
Additionally, a computer is static - the brain as a biological
neural network can reorganize itself during its "lifespan" and
therefore is able to learn, to compensate errors and so forth.

Within this text I want to outline how we can use the said
characteristics of our brain for a computer system.

So the study of artificial neural networks is motivated by
their similarity to successfully working biological systems,
which - in comparison to the overall system - consist of very

 Brain Computer
No. Of Processing Units ≈ 1012 ≈ 108

Type of Processing Unit Neurons Transistors

Type of Calculation Massively Parallel Usually Serial

Data Storage associative Address Based

Switching Time ≈ 10−3sec ≈ 10−8sec

Possible Switching Operation ≈ 1014 per sec ≈ 1020 per sec

Actual Switching Operation ≈ 1012 per sec ≈ 1010 per sec

40 IITM Journal of Management and IT

simple but numerous nerve cells that work massively in

parallel and (which is probably one of the most significant

aspects) have the capability to learn. There is no need to

explicitly program a neural network. For instance, it can learn

from training samples or by means of encouragement - with a

carrot and a stick, so to speak (reinforcement learning)

 III. BIOLOGICAL NEURAL NETWORKS

How do biological systems solve problems? How does a

system of neurons work? How can we understand its

functionality? What are different quantities of neurons able to

do? Where in the nervous system does information

processing occur? So here a short biological overview of the

complexity of simple elements of neural information

processing followed by some thoughts about their

simplification in order to technically adapt them.

A neuron is nothing more than a switch with information

input and output. The switch will be activated if there are

enough stimuli of other neurons hitting the information input.

Then, at the information output, a pulse is sent to, for

example, other neurons.

Figure 3.1: Illustration of a biological neuron with the components

discussed in this text.

A. Dendrites collect all parts of information

Dendrites branch like trees from the cell nucleus of the

neuron (which is called soma) and receive electrical signals

from many different sources, which are then transferred into

the nucleus of the cell. The amount of branching dendrites is

also called dendrite tree.

B. In the soma the weighted information is accumulated

After the cell nucleus (soma) has received a plenty of

activating (stimulating) and inhibiting (diminishing) signals

by synapses or dendrites, the soma accumulates these

signals. As soon as the accumulated signal exceeds a certain

value (called threshold value), the cell nucleus of the neuron

activates an electrical pulse which then is transmitted to the

neurons connected to the current one.

B. The axon transfers outgoing pulses

The pulse is transferred to other neurons by means of the

axon. The axon is a long, slender extension of the soma. In an

extreme case, an axon can stretch up to one meter (e.g. within

the spinal cord). The axon is electrically isolated in order to

achieve a better conduction of the electrical signal (we will

return to this point later on) and it leads to dendrites, which

transfer the information to, for example, other neurons. So

now we are back at the beginning of our description of the

neuron elements. An axon can, however, transfer information

to other kinds of cells in order to control them.

IV. ARTIFICIAL NEURAL NETWORKS

A technical neural network consists of simple processing

units, the neurons, and directed, weighted connections

between those neurons. Here, the strength of a connection

(or the connecting weight) between two neurons i and j is

Definition(Neural network). A neural network is a sorted

triple (N, V, w) with two sets N , V and a function w, where

N is the set of neurons and V a set {(i, j)|i, j ∈ N} whose

elements are called connections between neuron i and neuron

j .

The function w : V → R defines the weights, where w((i, j)),

the weight of the connection between neuron i and neuron j ,

is shortened to wi,j. Depending on the point of view it is

either undefined or 0 for connections that do not exist in the

Network.

So the weights can be implemented in a square weight matrix

W or, optionally, in a weight vector W with the row number

of the matrix indicating where the connection begins, and the

column number of the matrix indicating, which neuron is the

target. Indeed, in this case the numeric 0 marks a non-existing

connection. This matrix representation is also called Hinton

diagram.

Figure 4.1: Data processing of a neuron. The activation function of a

neuron implies the threshold value.

A. Connections carries information that is processed

41
Volume 11, Issue 1 ∙January-June 2020

by neurons

Data are transferred between neurons via connections with

the connecting weight being either excitatory or inhibitory.

The definition of connections has already been included in

the definition of the neural network.

B. The propagation function converts vector inputs to

scalar network inputs

Looking at a neuron j , we will usually find a lot of neurons

with a connection to j , i.e. which transfer their output to j .

For a neuron j the propagation function receives the outputs

oi1, . . . , oin of other neurons i1, i2, . . . , in (which are

connected to j), and transforms them in consideration of the

connecting weights wi,j into the network input netj that can

be further processed by the activation function. Thus, the

network input is the result of the propagation function.

Definition (Propagation function and network input). Let I =

{i1, i2, . . . , in} be the set of neurons, such that ∀z ∈ {1, . . . ,

n} : ∃wiz, j . Then the network input of j , called netj , is

calculated by the propagation function f prop as follows:

 netj = fprop(oi1, . . . ,oin,wi1,j , . . . ,win,j) ------- (3.1)

Here the weighted sum is very popular: The multiplication of

the output of each neuron i by wi,j , and the summation of the

results:

 netj = ∑i∈I (oi* wi,j) - -------- (3.2)

C. The activation is the "switching status" of a neuron

Based on the model of nature every neuron is, to a certain

extent, at all times active, excited or whatever you will call it.

The reactions of the neurons to the input values depend on

this activation state. The activation state indicates the extent

of a neuron’s activation and is often shortly referred to as

activation. Its formal definition is included in the following

definition of the activation function. But generally, it can be

defined as follows:

Definition (Activation state / activation in general). Let j be a

neuron. The activation state aj, in short activation, is

explicitly assigned to j , indicates the extent of the neuron’s

activity and results from the activation function.

D. Neurons get activated if the network input exceeds

their threshold value

Near the threshold value, the activation function of a neuron

reacts particularly sensitive. From the biological point of

view the threshold value represents the threshold at which a

neuron starts firing. The threshold value is also mostly

included in the definition of the activation function, but

generally the definition is the following:

Definition (Threshold value in general). Let j be a neuron.

The threshold value Θj is uniquely assigned to j and marks

the position of the maximum gradient value of the activation

function.

E. The activation function determines the activation of

a neuron dependent on network input and threshold

value

At a certain time – as we have already learned – the

activation aj of a neuron j depends on the previous activation

state of the neuron and the external input.

Definition (Activation function and Activation). Let j be a

neuron. The activation function is defined as

aj(t) = fact(netj(t), aj (t − 1), Θj) ………… (3.3)

It transforms the network input netj , as well as the previous

activation state aj(t − 1) into a new activation state aj(t), with

the threshold value Θ playing an important role, as already

mentioned.

Unlike the other variables within the neural network

(particularly unlike the ones defined so far) the activation

function is often defined globally for all neurons or at least

for a set of neurons and only the threshold values are

different for each neuron. We should also keep in mind that

the threshold values can be changed, for example by a

learning procedure. So it can in particular become necessary

to relate the threshold value to the time and to write, for

instance Θj as Θj(t) (but for reasons of clarity, I omitted this

here). The activation function is also called transfer function.

F. An output function may be used to process the

activation once again

The output function of a neuron j calculates the values which

are transferred to the other neurons connected to j. More

formally:

Definition (Output function). Let j be a neuron. The output

function

 fout(aj) = Oj -------- (3.4)

calculates the output value Oj of the neuron j from its

activation state aj.Generally, the output function is defined

globally, too. Often this function is the identity, i.e. the

activation aj is directly output :

 fout(aj) = aj , so Oj= aj -------- (3.5)

Unless explicitly specified differently, we will use the

identity as output function within this text.

G. Learning strategies adjust a network to fit our

42 IITM Journal of Management and IT

needs

Since we will address this subject later in detail and at first

want to get to know the principles of neural network

structures, I will only provide a brief and general definition

here:

Definition(General learning rule). The learning strategy is an

algorithm that can be used to change and thereby train the

neural network, so that the network produces a desired output

for a given input.

V. SOFTWARE PROJECT TELEMETRY

Software Project Telemetry is a project management

technique that uses software sensors to collect metrics

automatically and unobtrusively. It then employs a domain-

specific language to represent telemetry trends in software

product and process metrics.

Project management and process improvement decisions are

made by detecting changes in telemetry trends and comparing

trends between different periods of the same project. Software

project telemetry avoids many problems inherent in traditional

metrics models, such as the need to accumulate a historical

project database and ensure that the historical data remains

comparable to current and future projects.

It addresses the “metrics collection cost problem” through

highly automated measurement machinery: software sensors are

written to collect metrics automatically and unobtrusively. It

addresses the “metrics decision-making problem” through a

domain-specific language designed for the representation of

telemetry trends for different aspects of software development

process.

VI. METRICS COLLECTION

The metrics collection is the core thing by which we can

overlook and guide the software development process. Through

this metric collection all the patterns of the mistakes in the

software development that are usually done by code writers are

identified and suggested to make correct. Now there are two

methods by which these metrics are collected.

A. Sensor-based Data Collection
In software project telemetry, metrics are collected

automatically by sensors that unobtrusively monitor some form

of state in the project development environment. Sensors are

pieces of software collecting both process and product metrics.

Software process metrics are the metrics that assist in

monitoring and controlling the way software is produced.

Sensors collecting process metrics are typically implemented

in the form of plug-ins, which are attached to software

development tools in order to continuously monitor and record

their activities in the background. Some examples are listed

below:

 A plug-in for an IDE (integrated development

environment) such as Visual Studio, and Eclipse. It

can record individual developer activities

automatically and transparently, such as code editing

effort, compilation attempts, and results, etc

 A plug-in for a version control system, such as Clear

Case, CVS, and SVN. It can monitor code check-in

and check-out activities, and compute diff information

between different revisions.

 A plug-in for a bug tracking or issue management

system, such as Bugzilla, and Jira. Whenever an issue

is reported or its status is updated, the sensor can detect

such activities and record the relevant information.

 A plug-in for an automated build system, such as

Cruise Control. It can capture information related to

build attempts and build results.

Software product metrics are the metrics that describe the

properties of the software itself. Sensors collecting product

metrics are typically implemented as analyzers for software

artifacts. These analyzers usually need to be scheduled to run

periodically in order to acquire the continual flow of metrics

required by telemetry streams. To automate these tasks, one

can use a Schedule tasker job, or run them as tasks in

automated build system. Some examples are listed below:

 An analyzer that parses program source code to

compute size or complexity information.

 An analyzer that parses the output of existing tools,

such as Clover, and JBlanket , and converts them to a

data format that can be used by software project

telemetry.

There are many other possibilities. One can even imagine an

exotic sensor that retrieves project cost and payroll information

from a company’s accounting database, if extraction of such

information is permitted by the company policy. The point is: no

matter what the sensor does and regardless of its implementation

details, a sensor-based approach collects metrics automatically

and unobtrusively in order to keep data collection cost low, so

that developers are not distracted from their primary tasks -

developing software products instead of capturing process and

product metrics. This sensor-based approach eliminates the

chronic overhead in metrics collection. While setting up sensors

might require some effort, once they are installed and

configured, sensor data collection is automatic. This contrasts

with traditional data collection techniques, such as the paper-

and-pencil based approach used in PSP/TSP, or the tool-

supported approach used in LEAP, PSP Studio, and Software

Process Dashboard. These approaches require constant human

intervention or developer effort to collect metrics. Even in the

case of the tool-supported approach, the developer still cannot

escape the chronic overhead of constantly switching back and

forth between doing work and telling the tool what work is

being done.

The fact that chronic overhead is eliminated from sensor-based

metrics collection not only reduces the technology adoption

barrier, but also makes it feasible for software organizations to

43
Volume 11, Issue 1 ∙January-June 2020

apply measurement to a wide range of development activities and

products in order to get a comprehensive quantitative view of

development processes.

Admittedly, the sensor-based approach does come with some

restrictions:

 A sensor must be developed for each type of tool we

wish to monitor. This is a one-time cost. Once the

sensor is developed, it can be used by different

software development organizations for different

projects. The Collaborative Software Development Lab

has already developed a repository of over 25 sensors

for commonly-used tools.

 Some metrics may not be amenable to automated data

collection. An example is software development effort.

While it is feasible to instrument an IDE to

automatically get information such as how many hours

a developer has spent on writing code, it is almost

impossible to construct a sensor that knows how much

total effort a developer has contributed to a project.

For instance, two developers might be discussing the

design of a system in the hallway. It is almost

impossible to collect this type of effort in an

automated way. It is still an open research question

whether all important metrics can be captured by

sensors or not. However, this research takes a more

pragmatic view: it is only concerned with whether

sensors can collect sufficient metrics so that software

project telemetry has decision-making value for

project management and process improvement.

B. Telemetry Language and Telemetry Constructs

Many interesting issues in software project management involve

understanding the relationship between different measures. For

example, we might be interested in seeing whether an increased

investment in code review pays off with less unit test failures,

and/or increased coverage, and/or less defects reported against

the reviewed modules. Such questions require comparing a set

of metrics values over time. The telemetry language provides a

mechanism that facilitates interactive exploration of

relationships between metrics. The language has the following

syntax:

Streams <Stream Name> (<ParameterList>) =

{<DocumentationString>,<Expression> };

Y-axis

<YAxisName>(<Parameter>)={label,’integ

er|double|auto’,lowerBound,upperBound

};

Chart <Chart Name> (<ParameterList>) =

{<ChartTitile>,<StreamReferences> };

Report <Report Name>

(<ParameterLilst>) =

{<ReportTitle>,<ChartReferences> };

 Figure 6.1 Release Issue Tracking: Total vs. Open Issues

In essence, a telemetry report is a named set of telemetry charts

that can be generated for a specified project over a specified time

interval. The goal of a telemetry report is to discover how the

trajectory of different process and product metrics might

influence each other over time, and whether these influences

change depending upon context. A telemetry chart is a named

set of telemetry streams. The goal of a telemetry chart is to

display the trajectory of one or more process or product

metrics over time.

44 IITM Journal of Management and IT

 Figure 6.2 Telemetry Report Analysis

The y-axis construct is used to specify the vertical axis of a

telemetry chart. Note, however, that a telemetry chart definition

does not include the information about its horizontal axis,

because such information can be automatically inferred from

the time interval over which the telemetry analysis is

performed. A telemetry stream is a sequence of a single type

of software process or product metrics.

VII. CONCLUSIONS

 So how artificial neural network contributes in software

project telemetry As we discussed previously the approaches

in this field of software project telemetry are Sensory based

data collection & Language constructs. Both of these

approaches are limited because of the lacking of learning

factor that’s why use of artificial neural network can

sufficiently improve the required results.

The Purpose of this study is to improve software

development process; The method is Software Project

Telemetry which is only based on metrics approach & has

two main approaches Sensory based data collection or

Language constructs but both approaches lacks in learning

metrics for collection & decision making. That’s why there is

a scope of using Artificial Neural Networks, as Artificial

Neural Network can help in developing these metrics &

metrics decision making well.(fig 7.1)

 The Software Project Telemetry is an emerging field

of computer science and there is a lot of possibility of

renowned researches in this, as Artificial Neural Network is

one of the best approach to apply intelligence in any software

that’s why these two fields are the focus of attraction for the

future researchers.

 ACKNOWLEDGMENT

I like to express our special thanks and gratitude to Dr.
Anand Sharma, HOD, CS Department , Aligarh College of
Engineering & Technology, Aligarh,(Uttar Pradesh) to
inspire me to write Some Work. Also I like to Thank
Dr.Vinod Sharma, Director, Aligarh College of
Engineering & Technology, Aligarh,(Uttar Pradesh) to
provide us Platform where we can grow in this fast paced
professional environment with limited abilities.

REFERENCES

[1] David Kriesel, ―A brief introduction to: Neural Networks, (2005)

[2] Philip Johnson , Qin Zhang-Improving software development
process & project management with software project telemetry
(2005)

[3] Dr. Qadri Hamarsheh -Neural Networks & Fuzzy Logic

[4] Kenji Suzuki, Artificial Neural Networks-Methodological Advances

& Biomedical Applications (2011)

[5] Hristev, R. M. ―The ANN Book‖ ,Edition-1,(1998)

http://scholar.google.co.in/scholar_url?url=https%3A%2F%2Fcsdl-techreports.googlecode.com%2Fsvn%2Ftrunk%2Ftechreports%2F2004%2F04-16%2F04-16.pdf&hl=en&sa=T&oi=ggp&ct=res&cd=1&ei=3TfIVNe4FceEqgGQ9YHYCA&scisig=AAGBfm00Xx-C6HQGFlrw1q2G_v7SP9VTnQ&nossl=1&ws=1280x705
http://scholar.google.co.in/scholar_url?url=https%3A%2F%2Fcsdl-techreports.googlecode.com%2Fsvn%2Ftrunk%2Ftechreports%2F2004%2F04-16%2F04-16.pdf&hl=en&sa=T&oi=ggp&ct=res&cd=1&ei=3TfIVNe4FceEqgGQ9YHYCA&scisig=AAGBfm00Xx-C6HQGFlrw1q2G_v7SP9VTnQ&nossl=1&ws=1280x705
http://scholar.google.co.in/scholar_url?url=https%3A%2F%2Fcsdl-techreports.googlecode.com%2Fsvn%2Ftrunk%2Ftechreports%2F2004%2F04-16%2F04-16.pdf&hl=en&sa=T&oi=ggp&ct=res&cd=1&ei=3TfIVNe4FceEqgGQ9YHYCA&scisig=AAGBfm00Xx-C6HQGFlrw1q2G_v7SP9VTnQ&nossl=1&ws=1280x705

