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Abstract 

In the present scenario, it is important to mine valuable data from the elephantine set of data. In order to analysis 

high-dimensional data that is a task where software tools can reasonably assist the data analyst, by visualizing, 

and thereby uncovering, the inherent structure and topology of the data collection. Here, the neural network 

models may be one solution that can produce results autonomously. Text mining, also referred to 
as text data mining, roughly equivalent to text analytics, refers to the process of deriving high-quality 

information from text. High-quality information is typically derived through the devising of patterns and trends 

through means such as statistical pattern learning. The purpose of this paper is to learn how the text is mined 

with Adaptive Neural Network technique so that a valuable output is to be generated.  
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1 Introduction 

Data mining on text has been designated at various 

times as statistical text processing, knowledge 
discovery in text, intelligent text analysis, or natural 

language processing, depending on the application 

and the methodology that is used. Examples of text 

mining tasks include classifying documents into a set 

of specified topic areas (supervised learning), 

grouping documents such that each member of each 

group has similar meaning (clustering or unsupervised 

learning), and finding documents that satisfy some 

search criteria (information retrieval). Here, the 

Adaptive Hierarchical Incremental Grid Growing 

(AHIGG) is used in order to combines the features of 
the Growing Hierarchical Self-Organizing Map with 

the Incremental Grid Growing. 

 

In the current scenario, everyone wants the output is 

to be measured in terms of correctness, effectiveness 

and easy to understand. To make this possible, 

various techniques is used so that a knowledgeable 

result is to be generated after mining the huge set of 

data. 

2 Neural Network 

It consist of a set of nodes (neurons/units) connected 
by links. Each links has a numeric weight. Each unit 

or neurons has:- 

 

 A set of input links from other units. 

 A set of output links to other units. 

 A current activation level 

 An activation function in order to compute 
the activation level in the next time step. 

 

Figure 1: Node 

Illustration of fig 1:- 

The figure 1 depicts the typical structure of a node. 

There is a weight associated with every link. The 

following symbols depicts:- 

 ∑ - that computes the total input that it 

receive from the other neuron. 

 ʃ g  - that is the function of the total input that 

the neuron “i” receives.   

The total weighted inputs is the sum of the  

Inputs activations times their respective weights:- 

ini = ∑ wj,i  aj 

Neural network is just a model for computation. 

Neural networks mimic the human brain by learning 

from a training dataset and applying the learning to 

generalize patterns for classification and prediction. 

These algorithms are effective when the data is 

shapeless and lacks any apparent pattern. The basic 
unit of an artificial neural network is modeled after 

the neurons in the brain. This unit is known as a node 

and is one of the two main structures of the neural 

network model. The other structure is the link that 

corresponds to the connection between neurons in the 

brain. 
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Figure 2: Neural Network 

 

Consider a structure having 4 inputs and 3 outputs and 

we will be given a training data set. Training sets will 

be valid input output pairs. Set of cases where we are 
given i1, i2, i3, i4 for given values of i1, i2, i3, i4 as 

an input and we have to compute o1, o2, o3 values as 

an output. Several such cases will be given and the 

objective is to make this network learn that function. 

At the end of the training if any input corresponding 

to any of the sample datasets is given then the 

“correct output” should be displayed. We can never 

be 100% sure whether it is giving the correct output 

for the others, but the objective is to make the neural 

network to learn the function so that it is able to 

extrapolate also the correct values for the input 
scenarios, which were not given in the training set. 

Err = T – O 

The main motive is that the Err(error) should be 

minimized. 

Initially, the weights are randomly assigned. From the 

training set that contains the correct output “T”, we 

are taking the input values and pass it to the network. 

Then the network produces the output. Based on this 

output, the error computation is done. 

 

3 Applications Showcase –   Neural 
Network 

 CoEvolution of Neural Networks for Control 

of Pursuit & Evasion 

 Learning the Distribution of Object 

Trajectories for Event Recognition 

 Radiosity for Virtual Reality Systems 

 Autonomous Walker & Swimming Eel 

 Robocup: Robot World Cup Using 

 HMM's for Audio-to-Visual Conversion 

 Artificial Life: Galapagos 

 Speechreading (Lipreading) 

 Detection and Tracking of Moving Targets 

 Real-time Target Identification for Security 

Applications 

 Facial Animation 

 Behavioral Animation and Evolution of 

Behavior  

 A Three Layer Feed forward Neural Network 

 Artificial Life for Graphics, Animation, 

Multimedia, and Virtual Reality: Siggraph 

'95 Showcase 

 

4 Adaptive Hierarchical Incremental  
Grid Growing 

 

The Adaptive Hierarchical Incremental Grid 

Growing (AHIGG), as proposed in [He01] and 

[MHDR03], was designed to combine the 

various features of the models, and to overcome 

the limitations for each of them. Simplied, the 

AHIGG combines the features of the Growing 

Hierarchical Self-Organizing Map with the 
Incremental Grid Growing as the model for the 

individual maps (instead of the Growing Grid as 

it is the case in the Growing Hierarchical Self-

Organizing Map). Some more additions and 

improvements have been applied to the 

algorithm of the Incremental Grid Growing, e.g. 

to reduce the learning time by an improved 

initialisation rule, and a mechanism to determine 

a stagnation in the training process. In the rest of 

this section, the architecture and the algorithm of 

the AHIGG will be presented, before the model 

will be tested on real-world data. 

 

4.1 The Architecture 

The AHIGG is basically composed of a number of 
independent Incremental Grid Growing networks, 

which are arranged in hierarchical layers. Each of 

these layers depicts the input data at a specific level of 

granularity. On the first layer, a rough idea of the 

structure of the input data is given; each node of this 

layer may then be expanded to another IGG map in 

the next layer, thus giving a more detailed picture of 

this node's subset of the input data. The architecture 

of the IGG-maps, i.e. the size and layout, as well as 

the depth and balance of the hierarchy is determined 

automatically corresponding to the input space. The 

beginning of the AHIGG is a single node in a 
"virtual" layer 0, representing a statistical mean of all 

the input data. All nodes store values for the mean 

quantisation error mqe; each map has a vector mqe, 

i.e. the average quantisation error per vector in the 

map, denoted as vMqe. 

 

In Figure 3, one possible architecture of a trained 

AHIGG is depicted. 
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Note that the hierarchy is not necessarily balanced. 

 

 
Figure 3: Architecture 

 

4.2 The Training Algorithm 

Three different phases can be identified in the training 

processes which are as follows:- 

 

 the initialization 

 the IGG-based training 

 the hierarchical expansion phase 

 

Initialisation 

 

A single IGG map is initialised in the layer 1, usually 

having a 2£2 grid size, with all nodes connected in the 
grid. As a parent node to this map in the layer 1, the 

"virtual" layer 0 is initialised with a model vector m0, 

being the average of all the input vectors x. This 

node's mqe is calculated according to: 

 
where C is the set of input vectors. The mqe0 will 

play a crucial role during the training process (mqe0 is 
a measure for the diversity in the input set). 

All nodes in 1st layer will be initialized with a random 

model vector; contrary to the IGG, however, this 

initialisation is not completely random, but takes 

available qualitative information in the form of the 

model vector of the parent node into account:- 

 

 
where the subscript parent denotes this map's parent 

node, and vrand is a random vector of length 1., i.e. 

we limit the range to the n-dimensional subspace with 

mparent  as centre, and mqeparent  as radius. 

 

4.3  IGG based learning 

The map is trained in training cycles according to the 

standard SOM algorithm: 

A randomly chosen input vector is presented to the 

map, and the winning node is chosen according to 

Equation:- 

 
Then, the model vectors of the winning node and 

nodes within the neighbourhood-range are adapted, 

according to Equation:- 

 

 
 

For the learning rate α, a time decreasing function is 

taken, allowing a global organisation in the beginning 

of the training process, and a more local ordering 

towards its end. After each training cycle, the function 

is reset to its initial value. 
 

4.4 Hierarchical Expansion 

 

When a map in the AHIGG is completely trained, it is 
examined whether any of the map's nodes requires a 

higher resolution of its input patterns, and therefore 

should be expanded hierarchically, i.e. a new IGG 

map in the next layer will be added for this node. As a 

measure for nodes representing their input space 

inadequately, a node i's mean quantisation error, 

calculated according to: 

 
where Ci  is the set of input patterns mapped on this 

node, and mi  its model vector, is utilised. The, a 

simple threshold logic is used: with a parameter T2, 0 

< T2 < 1, all nodes for which 

  
holds true are expanded. Here, the parameter T2 is 

thus responsible for guiding the hierarchical growth 

process: the lower the value for T2, the deeper the 
hierarchy will develop. The newly established map in 

the next layer is initialized in a similar way as the map 

in 1st layer. 

5 Conclusion 

Mining text with neural network technique is 

responsible for generating effective output from a 

large set of data. Neural network-algorithms are 

effective when the data is shapeless and lacks any 

apparent pattern.   The future of Neural Networks is 

wide open, and may lead to many answers and/or 

questions.  

 
The Adaptive Hierarchical Incremental Grid Growing 

(AHIGG) is used in order to combines the features of 

the Growing Hierarchical Self-Organizing Map with 

the Incremental Grid Growing.  
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