

13

Mining with Neural Networks

Himashu Verma
1
 and Prerna Mahajan

2

1
Research Scholar, Department of Computer Science, IITM Janakpuri, New Delhi,India

2
Professor, Department of Computer Science, IITM Janakpuri, New Delhi, India

himanshu.iitm027@gmail.com, prerna.mahajan00@gmail.com

Abstract

In the present scenario, it is important to mine valuable data from the elephantine set of data. In order to analysis

high-dimensional data that is a task where software tools can reasonably assist the data analyst, by visualizing,

and thereby uncovering, the inherent structure and topology of the data collection. Here, the neural network

models may be one solution that can produce results autonomously. Text mining, also referred to
as text data mining, roughly equivalent to text analytics, refers to the process of deriving high-quality

information from text. High-quality information is typically derived through the devising of patterns and trends

through means such as statistical pattern learning. The purpose of this paper is to learn how the text is mined

with Adaptive Neural Network technique so that a valuable output is to be generated.

Keywords: Text mining, Adaptive neural network, Neuron, Information retrieval, AHIGG, HMM’s, IGG

1 Introduction

Data mining on text has been designated at various

times as statistical text processing, knowledge
discovery in text, intelligent text analysis, or natural

language processing, depending on the application

and the methodology that is used. Examples of text

mining tasks include classifying documents into a set

of specified topic areas (supervised learning),

grouping documents such that each member of each

group has similar meaning (clustering or unsupervised

learning), and finding documents that satisfy some

search criteria (information retrieval). Here, the

Adaptive Hierarchical Incremental Grid Growing

(AHIGG) is used in order to combines the features of
the Growing Hierarchical Self-Organizing Map with

the Incremental Grid Growing.

In the current scenario, everyone wants the output is

to be measured in terms of correctness, effectiveness

and easy to understand. To make this possible,

various techniques is used so that a knowledgeable

result is to be generated after mining the huge set of

data.

2 Neural Network

It consist of a set of nodes (neurons/units) connected
by links. Each links has a numeric weight. Each unit

or neurons has:-

 A set of input links from other units.

 A set of output links to other units.

 A current activation level

 An activation function in order to compute
the activation level in the next time step.

Figure 1: Node

Illustration of fig 1:-

The figure 1 depicts the typical structure of a node.

There is a weight associated with every link. The

following symbols depicts:-

 ∑ - that computes the total input that it

receive from the other neuron.

 ʃ g - that is the function of the total input that

the neuron “i” receives.

The total weighted inputs is the sum of the

Inputs activations times their respective weights:-

ini = ∑ wj,i aj

Neural network is just a model for computation.

Neural networks mimic the human brain by learning

from a training dataset and applying the learning to

generalize patterns for classification and prediction.

These algorithms are effective when the data is

shapeless and lacks any apparent pattern. The basic
unit of an artificial neural network is modeled after

the neurons in the brain. This unit is known as a node

and is one of the two main structures of the neural

network model. The other structure is the link that

corresponds to the connection between neurons in the

brain.

14

Figure 2: Neural Network

Consider a structure having 4 inputs and 3 outputs and

we will be given a training data set. Training sets will

be valid input output pairs. Set of cases where we are
given i1, i2, i3, i4 for given values of i1, i2, i3, i4 as

an input and we have to compute o1, o2, o3 values as

an output. Several such cases will be given and the

objective is to make this network learn that function.

At the end of the training if any input corresponding

to any of the sample datasets is given then the

“correct output” should be displayed. We can never

be 100% sure whether it is giving the correct output

for the others, but the objective is to make the neural

network to learn the function so that it is able to

extrapolate also the correct values for the input
scenarios, which were not given in the training set.

Err = T – O

The main motive is that the Err(error) should be

minimized.

Initially, the weights are randomly assigned. From the

training set that contains the correct output “T”, we

are taking the input values and pass it to the network.

Then the network produces the output. Based on this

output, the error computation is done.

3 Applications Showcase – Neural
Network

 CoEvolution of Neural Networks for Control

of Pursuit & Evasion

 Learning the Distribution of Object

Trajectories for Event Recognition

 Radiosity for Virtual Reality Systems

 Autonomous Walker & Swimming Eel

 Robocup: Robot World Cup Using

 HMM's for Audio-to-Visual Conversion

 Artificial Life: Galapagos

 Speechreading (Lipreading)

 Detection and Tracking of Moving Targets

 Real-time Target Identification for Security

Applications

 Facial Animation

 Behavioral Animation and Evolution of

Behavior

 A Three Layer Feed forward Neural Network

 Artificial Life for Graphics, Animation,

Multimedia, and Virtual Reality: Siggraph

'95 Showcase

4 Adaptive Hierarchical Incremental
Grid Growing

The Adaptive Hierarchical Incremental Grid

Growing (AHIGG), as proposed in [He01] and

[MHDR03], was designed to combine the

various features of the models, and to overcome

the limitations for each of them. Simplied, the

AHIGG combines the features of the Growing

Hierarchical Self-Organizing Map with the
Incremental Grid Growing as the model for the

individual maps (instead of the Growing Grid as

it is the case in the Growing Hierarchical Self-

Organizing Map). Some more additions and

improvements have been applied to the

algorithm of the Incremental Grid Growing, e.g.

to reduce the learning time by an improved

initialisation rule, and a mechanism to determine

a stagnation in the training process. In the rest of

this section, the architecture and the algorithm of

the AHIGG will be presented, before the model

will be tested on real-world data.

4.1 The Architecture

The AHIGG is basically composed of a number of
independent Incremental Grid Growing networks,

which are arranged in hierarchical layers. Each of

these layers depicts the input data at a specific level of

granularity. On the first layer, a rough idea of the

structure of the input data is given; each node of this

layer may then be expanded to another IGG map in

the next layer, thus giving a more detailed picture of

this node's subset of the input data. The architecture

of the IGG-maps, i.e. the size and layout, as well as

the depth and balance of the hierarchy is determined

automatically corresponding to the input space. The

beginning of the AHIGG is a single node in a
"virtual" layer 0, representing a statistical mean of all

the input data. All nodes store values for the mean

quantisation error mqe; each map has a vector mqe,

i.e. the average quantisation error per vector in the

map, denoted as vMqe.

In Figure 3, one possible architecture of a trained

AHIGG is depicted.

15

Note that the hierarchy is not necessarily balanced.

Figure 3: Architecture

4.2 The Training Algorithm

Three different phases can be identified in the training

processes which are as follows:-

 the initialization

 the IGG-based training

 the hierarchical expansion phase

Initialisation

A single IGG map is initialised in the layer 1, usually

having a 2£2 grid size, with all nodes connected in the
grid. As a parent node to this map in the layer 1, the

"virtual" layer 0 is initialised with a model vector m0,

being the average of all the input vectors x. This

node's mqe is calculated according to:

where C is the set of input vectors. The mqe0 will

play a crucial role during the training process (mqe0 is
a measure for the diversity in the input set).

All nodes in 1st layer will be initialized with a random

model vector; contrary to the IGG, however, this

initialisation is not completely random, but takes

available qualitative information in the form of the

model vector of the parent node into account:-

where the subscript parent denotes this map's parent

node, and vrand is a random vector of length 1., i.e.

we limit the range to the n-dimensional subspace with

mparent as centre, and mqeparent as radius.

4.3 IGG based learning

The map is trained in training cycles according to the

standard SOM algorithm:

A randomly chosen input vector is presented to the

map, and the winning node is chosen according to

Equation:-

Then, the model vectors of the winning node and

nodes within the neighbourhood-range are adapted,

according to Equation:-

For the learning rate α, a time decreasing function is

taken, allowing a global organisation in the beginning

of the training process, and a more local ordering

towards its end. After each training cycle, the function

is reset to its initial value.

4.4 Hierarchical Expansion

When a map in the AHIGG is completely trained, it is
examined whether any of the map's nodes requires a

higher resolution of its input patterns, and therefore

should be expanded hierarchically, i.e. a new IGG

map in the next layer will be added for this node. As a

measure for nodes representing their input space

inadequately, a node i's mean quantisation error,

calculated according to:

where Ci is the set of input patterns mapped on this

node, and mi its model vector, is utilised. The, a

simple threshold logic is used: with a parameter T2, 0

< T2 < 1, all nodes for which

holds true are expanded. Here, the parameter T2 is

thus responsible for guiding the hierarchical growth

process: the lower the value for T2, the deeper the
hierarchy will develop. The newly established map in

the next layer is initialized in a similar way as the map

in 1st layer.

5 Conclusion

Mining text with neural network technique is

responsible for generating effective output from a

large set of data. Neural network-algorithms are

effective when the data is shapeless and lacks any

apparent pattern. The future of Neural Networks is

wide open, and may lead to many answers and/or

questions.

The Adaptive Hierarchical Incremental Grid Growing

(AHIGG) is used in order to combines the features of

the Growing Hierarchical Self-Organizing Map with

the Incremental Grid Growing.

16

References

[1] https://en.wikipedia.org/wiki/Artificial_neura

l_network, visited on 10/12/2017.

[2] Mayor R., “Text mining with adaptive

neural networks”,

http://www.ifs.tuwien.ac.at/~mayer/publicati

ons/pdf/may_thesis04.pdf, visited on

12/12/2017.

[3] https://en.wikipedia.org/wiki/Textmining,

visited on 15/12/2017.

[4] Adaptive Neural Network Filters,

http://in.mathworks.com/help/nnet/ug/adapti
ve-neural-network-filters.html visited on

25/12/2017.

[5] Hui S. H., “Analyzing the topology of high-

dimensional data using the adaptive

hierarchical incremental grid growing”,

Diplomarbeit, Technische Universität Wien,

Austria (2001).

[6] Dieter M., Shao H.H., Michael D. and

Andreas R., “Adaptive hierarchical

incremental grid growing: An architecture

for high-dimensional data visualization”,
Proceedings of the 4th Workshop on Self-

Organizing Maps, Advances in Self-

Organizing Maps, Kitakyushu, Japan, pp

293-298 (2003).

