

w
w

w
.In

d
ia

n
Jo

u
rn

al
s.

co
m

M
em

b
er

s
C

o
p

y,
 N

o
t

fo
r

C
o

m
m

er
ci

al
 S

al
e

D
o

w
n

lo
ad

ed
 F

ro
m

 IP
 -

 1
15

.2
54

.4
4.

5
o

n
 d

at
ed

 2
4-

A
p

r-
20

19

Method for Storing User Password Securely

Gunjan Jha*
Navneet Popli**

Abstract

Computer users are asked to generate, secret passwords for uses host accounts, email, e-commerce
sites, and various online services. In this paper, I’ll explain the theory for how to store user passwords
securely; we propose technique that uses hashing, salting and Bcrypt to compute secure passwords for
many accounts while needed user to memorize only a single short password. The combination of
security and convenience will, we believe, entice users to adopt our method, we discuss various methods,
compare its strengths and weaknesses to those of related approaches.

Keywords: Password Security, website user authentication, hashing, salting, Bcrypt.

Introduction

Logging in with usernames and passwords has become
one of the most ubiquitous and most reviled rituals
of the Internet age. On the web, passwords are used
by publications, blogs, and webmail providers.

We have multiple methods to store password securely
in database. In this paper we will discuss about
different methods in detail. We have methods like
hashing, salting, and Bcrypt. We compare all the
methods and analyze that which one is best in which
scenario.

Related Work
Bad Solution : plain text password

It is not secure to store each users “plain text” password
in database:

user account plain text password
gunjan@hotmail.com password
jassy@gmail.com password123
... ...

This is insecure if a hacker gains access to database,
they'll be able to use that password to login as that
user on your database. This is even worse, if that user
uses the same password for all other sites on the
internet, the hacker can login there as well. Users will
be very unhappy.

Gunjan Jha*
GGSIP University (Meri College)

Navneet Popli**
GGSIP University (Meri College)

Bad Solution: sha1(password)
defis_password_correct(user, password_attempt):
return sha1(password_attempt) == user
["sha1_password"]

A better solution is to store a "one-way hash" of the
password, typically using a function likemd5 () or sha1
():

user account sha1(password)
gunjan@hot 5baa61e4c9b93f3f0682250
mail.com b6cf8331b7ee68fd8
jassy@gmail.com cbfdac6008f9cab4083784c

bd1874f76618d2a97
... ...

The server does not store the plain text password it
can still authenticate user:

This solution is secure than storing the plain text ,
because in theory it should be impossible to "undo" a
one-way hash function and find an input string that
output the same hash value. Unfortunately, hackers
found ways around this.

One problem is that many hash functions (including
md5 () and sha1 ()) are not so "one-way" after all,
and security expert suggest that these functions not
be used anymore for security application. (Instead,
you should use better hash functions like sha256 ()
which do not have any known vulnerabilities so
far.)

But there's a bigger problem: hackers don't need to
"undo" the hash function at all; they can just keep
guessing input passwords until they find a match, It

w
w

w
.In

d
ia

n
Jo

u
rn

al
s.

co
m

M
em

b
er

s
C

o
p

y,
 N

o
t

fo
r

C
o

m
m

er
ci

al
 S

al
e

D
o

w
n

lo
ad

ed
 F

ro
m

 IP
 -

 1
15

.2
54

.4
4.

5
o

n
 d

at
ed

 2
4-

A
p

r-
20

19

96 National Conference on Emerging Trends in Information Technology

IITM Journal of Management and IT

is similar to trying all the combinations of a
combination lock, Here what the code would look
like:-

database_table = {
"5baa61e4c9b93f3f0682250b6cf83
31b7ee68fd8":"gunjan@hotmail.com",
"cbfdac6008f9cab4083784cbd187
4f76618d2a97":"jassy@gmail.com",
...}
for password
inLIST_OF_COMMONPASSWORDS:
if sha1(password) in databasetable:
print "Yepieee I win! guessed a password!"

You might think that there are too many possible
passwords for this technique to be possible. But there
are far fewer common passwords than you'd think.
People use passwords that are based on dictionary
words (possibly with a few extra numbers or letters).
And most hash functions like sha1 () can be executed
very quickly -- one computer can literally try billions
of combinations per second. It means most passwords
can be figured out in less than one cpu-hour.

Aside: years ago, computers were not this fast, so the
hacker community created tables that have pre-
computed a large set of these hashes ahead of time,
Today nobody uses rainbow tables anymore because
computers are fast enough without them.

So the bad news is any user with a simple password
like "password" or "password12345"or any of the
billion most-likely passwords will have their password
guessed, if you have an extremely complicated
password (over 16 random numbers & letters) you
were probably safe.

Also notice that the code above is effectively attacking
all of the passwords at the same time. It doesn't
matter if there are ten users in your database or ten
million, it doesn't take the hacker any longer to guess
a matching password, All matters is that how fast the
hacker can iterate through potential password, (And
in fact, having lots of user actually help the hackers.
because it is more likely that someone in the system
was using the password "password12345".)

sha1(password) which LinkedIn used to store its
password, And in 2012 a large set of password hashes

were leaked, Over time hacker were able to figure out
the plain text password to most of these hashes.

Summary: storing a simple hash (with no salt) is not
secure - if a hacker gain access to your database, they
will be able to figure out the majority of the passwords
of the users.

Bad Solution : sha1(FIXED_SALT + password)
One attempt to make things more secure is to "salt"
the password before hashing it:

user account sha1("salt123456789" +
password)

gunjan@hotmail.com b467b644150eb350bbc1
c8b44b21b08af99268aa

jassy@gmail.com 31aa70fd38fee6f1f8b31
42942ba9613920dfea0

... ...

The salt is suppose to be a long random string of bytes,
If the hacker gains access to these new password hashes
(not the salt), will make it much more difficult for
the hacker to guess the passwords because they would
also require to know the salt, However if the hacker
has broken into server, probably also have access to
your source code as well so they'll learn the salt too,
That is why security designers just assume the worst,
& don't rely on the salt being secret.

But even if the salt is not a secret it still makes it harder
to use those old-school rainbow tablesI mentioned
before Those rainbow tables are built assuming there
is no salt so salted hashes stop them. However since
no one uses rainbow tables anymore adding a fixed
salt does not help much, The hacker can still execute
the same basic for-loop from above:

for password
inLIST_OF_COMMONPASSWORDS:
if sha1(SALT + password) in databasetable:
print "Yepieee I win! guessed a password!",
password
Summary: adding a fixed salt still is not secure enough.

Bad Solution : sha1(PER_USER_SALT +
password)
The next step in security is to create a new column in
database and store a different salt for each user, Salt is

w
w

w
.In

d
ia

n
Jo

u
rn

al
s.

co
m

M
em

b
er

s
C

o
p

y,
 N

o
t

fo
r

C
o

m
m

er
ci

al
 S

al
e

D
o

w
n

lo
ad

ed
 F

ro
m

 IP
 -

 1
15

.2
54

.4
4.

5
o

n
 d

at
ed

 2
4-

A
p

r-
20

19

Volume 6, Issue 1 • January-June, 2015 97

IITM Journal of Management and IT

randomly created when the user account is first
created. (or when user changes their password).

user account salt sha1(salt + password)
gunjan@hotmail.com 2dc 1a74404cb136dd600

7fcc 41dbf694e5c2ec0e
7d15b42

jassy@gmail.com afad e33ab75f29a9cf3f70d3
b2f fd14a7f47cd752e

9c550
...

Authenticating the user is not much harder than
before:

defis_password_correct(user, password_attempt):

return sha1(user["salt"] + password_attempt) ==
user["password_hash"]

By having a per-user-salt we get one huge benefit, the
hacker cannot attack all of your user's passwords at
the same time Instead his attack code has to try each
user one by one:

for user in users:
PER_USER_SALT = user["salt"]
for password
inLIST_OF_COMMONPASSWORDS:
if sha1(PER_USER_SALT + password) in
databasetable:
print "yepieee I win! guessed a password!", password

So basically if you have 1 million users having a per-
user-salt makes it 1 million times harder to figure out the
passwords of all your users. But still is not impossible for
a hacker to do this. Instead of 1 cpu-hour now they need
1 million cpu-hours which can easily be rented from
Amazon for about forty thousand dollar.

The real problem with all the systems we have
discussed so far is that hash functions like sha1 () (even
sha256 ()) can be executed on passwords at a rate of
hundred M+/sec (or even faster by using GPU) Even
though hash functions were designed with security in
mind they were also designed so they would be fast
when executed on longer inputs like entire files. These
hash functions were not designed to be used for
password storage.

Good Solution: bcrypt (password)
Instead there are a set of hash functions that were
specifically designed for passwords. In addition to

being secure "one-way" hash functions they were also
designed to be slow.

One example is Bcrypt, bcrypt() takes about hundred
ms to compute which is about 10,000x slower than
sha1(). Hundred ms is fast enough that the user won't
notice when they login but slow enough that it
becomes less feasible to execute against a long list of
likely passwords, instance if hackers want to
compute bcrypt() against a list of a billion likely
passwords it will take about 30,000 cpu-hours about
$1200 and that is for a single password, not
impossible but way more work than most hackers
are willing to do.

Basically the trick is, it executes an internal encryption
or hash function many times in a loop, there are other
alternative to Bcrypt such as PBKDF2 uses the same
trick.

Also Bcrypt is configurable with log_rounds
parameters that tells it how many times to execute
that internal hash function, If all of a sudden Intel
comes out with a new computer that is thosand times
faster than the state of the art today, you can
reconfigure your system to use a log_rounds that is
ten more than before (log_rounds is logarithmic)
which will cancel out the 1000x faster computer.

Because bcrypt() is too slow it makes the idea of
rainbow tables attractive again so a per-user-salt is built
into the Bcrypt system, In fact libraries like py-bcrypt
store the salt in the same string as the password hash
so you won't even have to create a separate database
column for the salt.

Let us see the code in action, First let's install it:

wget "http//py-bcrypt.googlecode.com/files/py-
bcrypt-0.2.tar.gz"
tar -xzf py-bcrypt-0.2.tar.gz
cd py-bcrypt-0.2
python setup.py build
sudo python setup.py install
cd ..
python -c "import bcrypt"# did it work?

Now that it is installed, here is the Python code you'd
run when creating a new user account (or reset their
password):

w
w

w
.In

d
ia

n
Jo

u
rn

al
s.

co
m

M
em

b
er

s
C

o
p

y,
 N

o
t

fo
r

C
o

m
m

er
ci

al
 S

al
e

D
o

w
n

lo
ad

ed
 F

ro
m

 IP
 -

 1
15

.2
54

.4
4.

5
o

n
 d

at
ed

 2
4-

A
p

r-
20

19

98 National Conference on Emerging Trends in Information Technology

IITM Journal of Management and IT

from bcrypt import hashpw, gensalt
hashed = hashpw(plaintext__password, gensalt())
print hashed # save this value to the database for the
user

'$2a$12$8vxYfAWCXe0Hm4gNX
8nzwuqWNukOkcMJ1a9G2tD71ipotEZ9f80Vu'

Let us dissect that output string a little:

As you can see it stores both the salt, & the hashed
output in the string, It also stores the log_rounds
parameter that was used to generate the password
which controls how much work that is how slow it is
in computation, If you want the hash to be slower
you pass a larger value to gensalt():

hashed = hashpw(plaintext_password,
gensalt(log_rounds=14))
print hashed
'$2a$13$ZyprE5MRw2Q3WpNOGZW
GbeG7ADUre1Q8QO.uUUtcbqloU0yvzavOm'

Notice that there is now a 14 where there was a 13
before, In any case you store this string in to the
database, & when that same user attempts to log in
you retrieve that same hashed value and do this:

if hashpw(password_attempt, hashed) == hashed:
print "matches"
else:
print "does not match"

You might be wondering why you pass in hashed as
the salt argument to hashpw() The reason this works
is that the hashpw() function is smart and can extract
the salt from that$2a$13$.... string This is great
because it means you never have to store parse or
handle any salt values yourself , the only value you
need to deal with is that single hashed string which
contains everything you need.

Conclusion
Final Thoughts for choosing a good password If your
user has the password "password" then no amount of
hashing,salting,bcrypt etc is going to protect that user
The hacker will always try simpler passwords first so
if your password is toward the top of the list of likely
passwords the hacker will probably guess it.

The best way to prevent password from being guessed
is to create a password that is as far down the list of
likely passwords as possible, Any password based on a
dictionary word even if it has simple mutations like a
letter/number at the end is going to be on the list of
the first few million password guesses.

Unfortunately difficult-to-guess passwords are also
difficult-to-remember, If that was not an issue I would
suggest picking a password that is a 16 character random
sequence of numbers and letters ,people have suggested
using passphrases instead, like "shally is a police officer",
your system allows long passwords with spaces then this
is definitely better than a password like "shally123". (But
I actually suspect the entropy of most user's pass phrases
will end up being about the same as a password of eight
random alphanumeric characters.)

Acknowledgment
This research paper is made possible through the help
and support from everyone, including teachers, family
and friends.

References

1. OpenSSL: The open source toolkit for SSL/TLS.http://www.openssl.org.

2. Mart´?n Abadi, T. Mark A. Lomas, and RogerNeedham. Strengthening passwords. Technical Report1997 -
033, 1997.

3. Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key exchange secure against dictionary
attacks. In EUROCRYPT, pages 139-155,2000.

w
w

w
.In

d
ia

n
Jo

u
rn

al
s.

co
m

M
em

b
er

s
C

o
p

y,
 N

o
t

fo
r

C
o

m
m

er
ci

al
 S

al
e

D
o

w
n

lo
ad

ed
 F

ro
m

 IP
 -

 1
15

.2
54

.4
4.

5
o

n
 d

at
ed

 2
4-

A
p

r-
20

19

Volume 6, Issue 1 • January-June, 2015 99

IITM Journal of Management and IT

4. E. Felten, D. Balfanz, D. Dean, and D. Wallach. Web spoofing: An Internet con game. Proc. 20th National
Information Systems Security Conference, 1997.

5. Eran Gabber, Phillip B. Gibbons, Yossi Matias, and Alain J. Mayer. How to make personalized web browsing
simple, secure, and anonymous. In Financial Cryptography, pages 17-32, 1997.

6. Rosario Gennaro and Yehuda Lindell. A framework for password-based authenticated key exchange. In
EUROCRYPT, pages 524-543, 2003.

7. J. Jeff, Y. Alan, B. Ross, and A. Alasdair. The memorability and security of passwords - some empirical
results, 2000.

8. Ian Jermyn, Alain Mayer, Fabian Monrose, Michael K. Reiter, and Aviel D. Rubin. The design and analysis
of graphical passwords. 1999.

9. Jonathan Katz, Rafail Ostrovsky, and Moti Yung. Efficient password-authenticated key exchange using
human-memorable passwords. In EUROCRYPT '01: Proceedings of the International Conference on the
Theory and Application of Cryptographic Techniques, pages 475-494. Springer-Verlag, 2001.

10. J. Kelsey, B. Schneier, C. Hall, and D. Wagner. Secure applications of low-entropy keys. Lecture Notes in
Computer Science, 1396:121-134, 1998.

11. David P. Kormann and Aviel D. Rubin. Risks of the Passport single signon protocol. In Proc. 9th international
World Wide Web conference on computer networks, pages 51-58. North-Holland Publishing Co., 2000.

12. U. Manber. A simple scheme to make passwords based on one-way functions much harder to crack, 1996.

13. Robert Morris and Ken Thompson. Password security: A case history. CACM, 22(11):594-597, 1979.

14. Blake Ross, Collin Jackson, Nicholas Miyake, Dan Boneh, and John C. Mitchell. A browser plug-in solution
to the unique password problem, 2005.Technical report, Stanford-SecLab-TR-2005-1.

15. Bruce Schneier et al. Password Safe application.http://www.schneier.com/passsafe.html.

16. Joe Smith. Password Safe cracker utility.

