

w
w

w
.In

d
ia

n
Jo

u
rn

al
s.

co
m

M
em

b
er

s
C

o
p

y,
 N

o
t

fo
r

C
o

m
m

er
ci

al
 S

al
e

D
o

w
n

lo
ad

ed
 F

ro
m

 IP
 -

 1
15

.2
54

.4
4.

5
o

n
 d

at
ed

 2
4-

A
p

r-
20

19

Jasvinder Singh*
IITM, GGSIPU

SQL queries to an underlying database. Most Web
applications used on the Internet or within
enterprise systems work this way and could therefore
be vulnerable to SQL injection. The cause of SQL
injection vulnerabilities is relatively simple and well
understood: insufficient validation of user input.
To address this problem, developers have proposed
a range of coding guidelines [9] that promote
defensive coding practices, such as encoding user
input and validation. A rigorous and systematic
application of these techniques is an effective
solution for preventing SQL injection
vulnerabilities. However, in practice, the application
of such techniques is human-based and, thus, prone
to errors. Furthermore, fixing legacy code-bases that
might contain SQL injection vulnerabilities can be
an extremely labor-intensive task.

SQL Injection Vulnerability Problems
SQL injection vulnerability results from the fact that
most web application developers do not apply user
input validation and they are not aware about
the consequences of such practices [11]. These
inappropriate programming practices enable the
attackers to trick the system by executing malicious
SQL commands to manipulate the backend

Introduction

SQL injection vulnerabilities are the most serious
threats for Web applications [4, 15]. Such
applications that are vulnerable to SQL injection
may allow an attacker to gain complete access to
their underlying databases. Attackers can even use
an SQL injection vulnerability to take control of
and corrupt the system that hosts the Web
application. Web applications that are vulnerable
to SQL Injection Attacks (SQLIAs) are
widespread—a study by Gartner Group on over 300
Internet Web sites has shown that most of them
could be vulnerable to SQLIAs. In fact, SQLIAs
have successfully targeted high-profile victims such
as Travelocity, FTD.com, and Guess Inc. SQL
injection refers to a class of code-injection attacks
in which data provided by the user is included in
an SQL query in such a way that part of the user’s
input is treated as SQL code. By leveraging these
vulnerabilities, an attacker can submit SQL
commands directly to the database. These attacks
are a serious threat to any Web application that
receives input from users and incorporates it into

Analysis of SQL Injection Attack
Jasvinder Singh*

Abstract

These days almost all information is online. To store such information one needs huge databases.
Over a past few years a new type of cyber security threat has come into existence namely Structured
Query Language (SQL) injection attack. The same can be launched by means of web browsers.
Typical uses of SQL injection leak confidential information from a database, by-pass authentication
logic, or add unauthorized accounts to a database. The severity of this attack can be judged from
the fact that in seconds of its inception all critical information is routed to malicious user, thus
causing a tremendous amount of loss in terms of authentication, data integration and privacy. As
a result, the system could bear heavy loss in giving proper services to its users or it may face
complete destruction. Sometimes such type of collapse of a system can threaten the existence of a
company or a bank or an industry.

Keywords: Structured Query Language Injection Attack (SQLIA), Java Database Connectivity
(JDBC), Preprocessor Hypertext (PHP), Intrusion Detection System (IDS), Security Policy
Descriptor Language (SPDL)

w
w

w
.In

d
ia

n
Jo

u
rn

al
s.

co
m

M
em

b
er

s
C

o
p

y,
 N

o
t

fo
r

C
o

m
m

er
ci

al
 S

al
e

D
o

w
n

lo
ad

ed
 F

ro
m

 IP
 -

 1
15

.2
54

.4
4.

5
o

n
 d

at
ed

 2
4-

A
p

r-
20

19

Volume 5, Issue 1(A) • January - June, 2014 49

database [11, 12]. One of the most important
properties of SQL injection attack is that it is easy
to be launched and difficult to be avoided. These
factors make this kind of attack preferred by most
cyber criminals, and it is getting more attention in
the recent years [12]. Furthermore, the available
scanning tools have limited features in shaping
efficient attacking patterns which are required to
detect hidden SQL injection vulnerability [11, 12].
Moreover, the available scanning tools use brute
force techniques to extract data from the targeted
websites. These tools do not show meaningful and
detailed information about the detected
vulnerability. Obtaining this critical detailed
information would be very useful for web developers
who are not aware about hacking techniques in
helping them to fix the bugs, thus to eliminating
these vulnerabilities.

SQL Injection Detection Technique

Detection approach to identify the SQL injections
is as follows:

1. Initial Attack-Validation: It is the fastest step
which is based on the historical attack analysis.
Algorithm for the attack detection is as follows:

a) Get input string

b) Match Input string in attack table

c) if result=true

d) Declare “Attack” else Exit ();

The above algorithm validates the input SQL string
using the Initial Knowledge Base which stores all
the frequent SQL attacks of each category and is
managed by the probabilistic approach. If the new
input string pattern matches with the any of the
patterns already stored in initial knowledge base,
then it is declared as an SQL attack and a warning
message will be generated automatically.

2. AND-OR Validation: This step determines the
AND-OR word in the input String of web
form(s). This Step uses some string comparing
operations and parsing techniques to find the

AND-OR locations and also counts AND &
OR keywords separately before performing the
SQL execution (mysql_query) operation. The
algorithm for this step is as follows:

a) Get input string

b) Explore each word

c) Repeat step d) and e) until string ends;

d) Match each word with AND & OR
keyword;

e) If result=true /*Comment condition is true
for any word*/

f) Declare “Attack” else Exit ();

This step only contains parsing operations to
validate the AND & OR keywords in the final SQL
string of the user parameters.

3. Equal Sign (‘=’) Validation: This step analyzes
the ‘=’ syntax in the input String of web form(s)
using Knuth–Morris–Prattalgorithm [17]. This
Step compares the final SQL string of the user
parameters with the standard format of SQL
query. Algorithm for this step is as follows:

a) Get input string

b) Repeat step c) and d) until string ends.

c) Match each letter with ‘=’ keyword;

d) If result=true /*Comment condition is true
for any word*/ Declare “Attack” else Exit
();

This operation is also executed before execution of
the commit statement of the SQL string
(mysql_query).

4. Attack Keywords Analysis: In this algorithm,
each letter of input word is explored and
matched with a specific set of attack letters (:”’,
#, —, ~). Algorithm for this step is as follows:

a) Get input string

b) Explore Each letter

c) Repeat step d) and e) until string ends.

d) Match each letter with specific set of letters
(:,”,’ ,#,— ,~);

w
w

w
.In

d
ia

n
Jo

u
rn

al
s.

co
m

M
em

b
er

s
C

o
p

y,
 N

o
t

fo
r

C
o

m
m

er
ci

al
 S

al
e

D
o

w
n

lo
ad

ed
 F

ro
m

 IP
 -

 1
15

.2
54

.4
4.

5
o

n
 d

at
ed

 2
4-

A
p

r-
20

19

50 National Conference on Emerging Trends in Information Technology

e) If result=true /*Comment condition is true
for any word*/ Declare “Attack” else Exit
();

Static Analysis

To perform static analysis of the stored procedure,
a stored procedure parser which extracts the control
flow graph from the stored procedure. All the EXEC
(@SQL) statements in the control flow graph are
labeled and then backtrack to identify all the
statements involved in the construction of the
@SQL statement in the control flow graph. In this
process, an SQL-graph as explained below is
generated. From the SQL-graph, SQL statements
which depend on user inputs are selected and flagged
to monitor their structure at runtime. At runtime,
we compare the structure of the original intended
SQL statement with the dynamically generated SQL
statement having user inputs by using a Finite State
Automaton. An SQLIA which alters the original
structure will be flagged as unsafe and related
information would be logged.

Prevention of Sqlias

Researchers have proposed a wide range of
techniques to address the problem of SQL injection.
These techniques range from development best
practices to fully automated frameworks for
detecting and preventing SQLIAs.

Defensive Coding Practices

The root cause of SQL injection vulnerabilities is
insufficient input validation. Therefore, the
straightforward solution for eliminating these
vulnerabilities is to apply suitable defensive coding
practices. Some of the best practices proposed in
the literature for preventing SQL injection
vulnerabilities are as follows:

1. Input type checking: SQLIAs can be
performed by injecting commands into either
a string or numeric parameter. Even a simple
check of such inputs can prevent many attacks.
For example, in the case of numeric inputs, the

developer can simply reject any input that
contains characters other than digits. Many
developers omit this kind of check by accident
because user input is almost always represented
in the form of a string, regardless of its content
or intended use.

2. Encoding of inputs: Injection into a string
parameter is often accomplished through the
use of meta-characters that trick the SQL parser
into interpreting user input as SQL tokens.
While it is possible to prohibit any usage of these
meta-characters, doing so would restrict a non-
malicious user’s ability to specify legal inputs
that contain such characters. A better solution
is to use functions that encode a string in such
a way that all meta-characters are specially
encoded and interpreted by the database as
normal characters.

3. Positive pattern matching: Developers should
establish input validation routines that identify
good input as opposed to bad input. This
approach is generally called positive validation,
as opposed to negative validation, which
searches input for forbidden patterns or SQL
tokens. Because developers might not be able
to envision every type of attack that could be
launched against their application, but should
be able to specify all the forms of legal input,
positive validation is a safer way to check inputs.

4. Identification of all input sources: Developers
must check all input to their application. There
are many possible sources of input to an
application. If used to construct a query, these
input sources can be a way for an attacker to
introduce an SQLIA. Simply put, all input
sources must be checked. Although defensive
coding practices remain the best way to prevent
SQL injection vulnerabilities, their application
is problematic in practice. Defensive coding is
prone to human error and is not as rigorously
and completely applied as automated
techniques. While most developers do make an
effort to code safely, it is extremely difficult to

w
w

w
.In

d
ia

n
Jo

u
rn

al
s.

co
m

M
em

b
er

s
C

o
p

y,
 N

o
t

fo
r

C
o

m
m

er
ci

al
 S

al
e

D
o

w
n

lo
ad

ed
 F

ro
m

 IP
 -

 1
15

.2
54

.4
4.

5
o

n
 d

at
ed

 2
4-

A
p

r-
20

19

Volume 5, Issue 1(A) • January - June, 2014 51

apply defensive coding practices rigorously and
correctly to all sources of input. In fact, many
of the SQL injection vulnerabilities discovered
in real applications are due to human errors ,
developers forgot to add checks or did not
perform adequate input validation [23, 18, 5].
In other words, in these applications, developers
were making an effort to detect and prevent
SQLIAs, but failed to do so adequately and in
every needed location. These examples provide
further evidence of the problems associated with
depending on developer’s use of defensive
coding. Moreover, approaches based on
defensive coding are weakened by the
widespread promotion and acceptance of so-
called “pseudo remedies” [9]. We discuss two
of the most commonly-proposed pseudo-
remedies. The first of such remedies consists of
checking user input for SQL keywords, such as
“FROM,” “WHERE,” and “SELECT,” and
SQL operators, such as the single quote or
comment operator. The rationale behind this
suggestion is that the presence of such keywords
and operators may indicate an attempted
SQLIA. This approach clearly results in a high
rate of false positives because, in many
applications, SQL keywords can be part of a
normal text entry, and SQL operators can be
used to express formulas or even names (e.g.,
O’Brian). The second commonly suggested
pseudo-remedy is to use stored procedures or
prepared statements to prevent SQLIAs.
Unfortunately, stored procedures and prepared
statements can also be vulnerable to SQLIAs.

Detection and Prevention Techniques

Researchers have proposed a range of techniques to
assist developers and compensate for the
shortcomings in the application of defensive coding.

1. Black Box Testing: Huang and colleagues [22]
propose WAVES, a black-box technique for
testing Web applications for SQL injection
vulnerabilities. The technique uses a Web
crawler to identify all points in a Web

application that can be used to inject
SQLIAs.

It then builds attacks that target such points
based on a specified list of patterns and attack
techniques. WAVES then monitors the
application’s response to the attacks and uses
machine learning techniques to improve its
attack methodology. This technique improves
over most penetration-testing techniques by
using machine learning approaches to guide its
testing. However, like all black-box and
penetration testing techniques, it cannot provide
guarantees of completeness.

2. Static Code Checkers: JDBC-Checker is a
technique for statically checking the type
correctness of dynamically-generated SQL
queries [2, 3]. This technique was not developed
with the intent of detecting and preventing
general SQLIAs, but can nevertheless be used
to prevent attacks that take advantage of type
mismatches in a dynamically-generated query
string. JDBC-Checker is able to detect one of
the root causes of SQLIA vulnerabilities in
code—improper type checking of input.
However, this technique would not catch more
general forms of SQLIAs because most of these
attacks consist of syntactically and type correct
queries. Wassermann and Su propose an
approach that uses static analysis combined with
automated reasoning to verify that the SQL
queries generated in the application layer cannot
contain a tautology [7].

The primary drawback of this technique is that
its scope is limited to detecting and preventing
tautologies and cannot detect other types of
attacks.

3. Combined Static and Dynamic Analysis:
AMNESIA is a model-based technique that
combines static analysis and runtime
monitoring [20]. In its static phase, AMNESIA
uses static analysis to build models of the
different types of queries an application can
legally generate at each point of access to the

w
w

w
.In

d
ia

n
Jo

u
rn

al
s.

co
m

M
em

b
er

s
C

o
p

y,
 N

o
t

fo
r

C
o

m
m

er
ci

al
 S

al
e

D
o

w
n

lo
ad

ed
 F

ro
m

 IP
 -

 1
15

.2
54

.4
4.

5
o

n
 d

at
ed

 2
4-

A
p

r-
20

19

52 National Conference on Emerging Trends in Information Technology

database. In its dynamic phase, AMNESIA
intercepts all queries before they are sent to the
database and checks each query against the
statically built models. Queries that violate the
model are identified as SQLIAs and prevented
from executing on the database. In their
evaluation, the authors have shown that this
technique performs well against SQLIAs. The
primary limitation of this technique is that its
success is dependent on the accuracy of its static
analysis for building query models. Certain
types of code obfuscation or query development
techniques could make this step less precise and
result in both false positives and false negatives.

Similarly, two recent related approaches,
SQLGuard [6] and SQLCheck [24] also check
queries at runtime to see if they conform to a
model of expected queries. In these approaches,
the model is expressed as a grammar that only
accepts legal queries. In SQLGuard, the model
is deduced at runtime by examining the
structure of the query before and after the
addition of user-input. In SQLCheck, the
model is specified independently by the
developer. Both approaches use a secret key to
delimit user input during parsing by the runtime
checker, so security of the approach is dependent
on attackers not being able to discover the key.
Additionally, the use of these two approaches
requires the developer to either rewrite code to
use a special intermediate library or manually
insert special markers into the code where user
input is added to a dynamically generated query.

4. Taint Based Approaches: WebSSARI detects
input-validation related errors using
information flow analysis [23]. In this approach,
static analysis is used to check taint flows against
preconditions for sensitive functions. The
analysis detects the points in which
preconditions have not been met and can
suggest filters and sanitization functions that can
be automatically added to the application to
satisfy these preconditions. The WebSSARI
system works by considering as sanitized input

that has passed through a predefined set of
filters. In their evaluation, the authors were able
to detect security vulnerabilities in a range of
existing applications. The primary drawbacks
of this technique are that it assumes that
adequate preconditions for sensitive functions
can be accurately expressed using their typing
system and that having input passing through
certain types of filters is sufficient to consider it
not tainted. For many types of functions and
applications, this assumption is too strong.

Livshits and Lam [18] use static analysis
techniques to detect vulnerabilities in software.
The basic approach is to use information flow
techniques to detect when tainted input has
been used to construct an SQL query. These
queries are then flagged as SQLIA
vulnerabilities. The authors demonstrate the
viability of their technique by using this
approach to find security vulnerabilities in a
benchmark suite. The primary limitation of this
approach is that it can detect only known
patterns of SQLIAs and, because it uses a
conservative analysis and has limited support
for untainting operations, can generate a
relatively high amount of false positives. Several
dynamic taint analysis approaches have been
proposed. Two similar approaches by Nguyen-
Tuong and colleagues [1] and Pietraszek and
Berghe [16] modify a PHP interpreter to track
precise per-character taint information. The
techniques use a context sensitive analysis to
detect and reject queries if untrusted input has
been used to create certain types of SQL tokens.
A common drawback of these two approaches
is that they require modifications to the runtime
environment, which affects portability.

A technique by Haldar and colleagues [19] and
SecuriFly [10] implement a similar approach for
Java. However, these techniques do not use the
context sensitive analysis employed by the other
two approaches and track taint information on
a per-string basis (as opposed to per character).
SecuriFly also attempts to sanitize query strings

w
w

w
.In

d
ia

n
Jo

u
rn

al
s.

co
m

M
em

b
er

s
C

o
p

y,
 N

o
t

fo
r

C
o

m
m

er
ci

al
 S

al
e

D
o

w
n

lo
ad

ed
 F

ro
m

 IP
 -

 1
15

.2
54

.4
4.

5
o

n
 d

at
ed

 2
4-

A
p

r-
20

19

Volume 5, Issue 1(A) • January - June, 2014 53

that have been generated using tainted input.
However, this sanitization approach does not
help if injection is performed into numeric
fields. In general, dynamic taint-based
techniques have shown a lot of promise in their
ability to detect and prevent SQLIAs. The
primary drawback of these approaches is that
identifying all sources of tainted user input in
highly-modular Web applications and
accurately propagating taint information is
often a difficult task.

5. New Query Development Paradigms: Two
recent approaches, SQL DOM [13] and Safe
Query Objects [21], use encapsulation of
database queries to provide a safe and reliable
way to access databases. These techniques offer
an effective way to avoid the SQLIA problem
by changing the query-building process from
an unregulated one that uses string
concatenation to a systematic one that uses a
type-checked API. Within their API, they are
able to systematically apply coding best practices
such as input filtering and rigorous type
checking of user input. By changing the
development paradigm in which SQL queries
are created, these techniques eliminate the
coding practices that make most SQLIAs
possible. Although effective, these techniques
have the drawback that they require developers
to learn and use a new programming paradigm
or query-development process. Furthermore,
because they focus on using a new development
process, they do not provide any type of
protection or improved security for existing
legacy systems.

6. Intrusion Detection Systems: F. Valeur [8]
proposed the use of an Intrusion Detection
System (IDS) to detect SQLIAs. Their IDS
system is based on a machine learning technique
that is trained using a set of typical application
queries. The technique builds models of the
typical queries and then monitors the
application at runtime to identify queries that
do not match the model. In their evaluation,

Valeur and colleagues have shown that their
system is able to detect attacks with a high rate
of success. However, the fundamental limitation
of learning based techniques is that they can
provide no guarantees about their detection
abilities because their success is dependent on
the quality of the training set used. A poor
training set would cause the learning technique
to generate a large number of false positives and
negatives.

7. Proxy Filters: Security Gateway [5] is a proxy
filtering system that enforces input validation
rules on the data flowing to a Web application.
Using their Security Policy Descriptor Language
(SPDL), developers provide constraints and
specify transformations to be applied to
application parameters as they flow from the
Web page to the application server. Because
SPDL is highly expressive, it allows developers
considerable freedom in expressing their
policies. However, this approach is human-
based and, like defensive programming, requires
developers to know not only which data needs
to be filtered, but also what patterns and filters
to apply to the data.

8. Instruction Set Randomization: SQLrand
[14] is an approach based on instruction-set
randomization. SQLrand provides a framework
that allows developers to create queries using
randomized instructions instead of normal SQL
keywords. A proxy filter intercepts queries to
the database and de-randomizes the keywords.
SQL code injected by an attacker would not
have been constructed using the randomized
instruction set. Therefore, injected commands
would result in a syntactically incorrect query.
While this technique can be very effective, it
has several practical drawbacks. First, since it
uses a secret key to modify instructions, security
of the approach is dependent on attackers not
being able to discover the key. Second, the
approach imposes a significant infrastructure
overhead because it requires the integration of
a proxy for the database in the system.

w
w

w
.In

d
ia

n
Jo

u
rn

al
s.

co
m

M
em

b
er

s
C

o
p

y,
 N

o
t

fo
r

C
o

m
m

er
ci

al
 S

al
e

D
o

w
n

lo
ad

ed
 F

ro
m

 IP
 -

 1
15

.2
54

.4
4.

5
o

n
 d

at
ed

 2
4-

A
p

r-
20

19

54 National Conference on Emerging Trends in Information Technology

Conclusion

In this paper a rigorous discussion has been done
regarding SQL injection attack. The vulnerabilities
and threats caused by the same have been
highlighted. Besides, the SQL injection and
prevention techniques proposed by various

researchers have been explained. Thus one can
conclude that SQL injection is a grave threat to cyber
security. From time to time new algorithms have to
be proposed and implemented to protect the most
valuable asset to human kind in today’s world i.e.
their databases.

References

1. A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans. “Automatically Hardening Web
Applications Using Precise Tainting Information.” In Twentieth IFIP International Information Security
Conference (SEC 2005), May 2005.

2. C. Gould, Z. Su, and P. Devanbu. JDBC Checker: “A Static Analysis Tool for SQL/JDBC Applications.”
In Proceedings of the 26th International Conference on Software Engineering (ICSE 04) –Formal
Demos, pages 697–698, 2004.

3. C. Gould, Z. Su, and P. Devanbu. “Static Checking of Dynamically Generated Queries in Database
Applications.” In Proceedings of the 26th International Conference on Software Engineering (ICSE
04), pages 645–654, 2004.

4. D. Aucsmith. “Creating and Maintaining Software that Resists Malicious Attack.” http://
www.gtisc.gatech.edu/bioaucsmith.html,September 2004. Distinguished Lecture Series.

5. D. Scott and R. Sharp. “Abstracting Application-level Web Security.” In Proceedings of the 11th
International Conference on the World Wide Web (WWW 2002), pages 396–407, 2002.

6. G. T. Buehrer, B. W. Weide, and P. A. G. Sivilotti. “Using Parse Tree Validation to Prevent SQL Injection
Attacks.” In International Workshop on Software Engineering and Middleware (SEM), 2005.

7. G. Wassermann and Z. Su. “An Analysis Framework for Security in Web Applications.” In Proceedings
of the FSE Workshop on Specification and Verification of Component-Based Systems (SAVCBS 2004),
pages 70–78, 2004.

8. F. Valeur, D. Mutz, and G. Vigna. “A Learning-Based Approach to the Detection of SQL Attacks.” In
Proceedings of the Conference on Detection of Intrusions and Malware and Vulnerability Assessment
(DIMVA), Vienna, Austria, July 2005.

9. M. Howard and D. LeBlanc. “Writing Secure Code.” Microsoft Press, Redmond, Washington, second
edition, 2003.

10. M. Martin, B. Livshits, and M. S. Lam. “Finding Application Errors and Security Flaws Using PQL: A
Program Query Language.” In Proceedings of the 20th annual ACM SIGPLAN conference on Object
oriented programming systems languages and applications (OOPSLA 2005), pages 365–383, 2005.

11. Kemalis, K., & Tzouramanis, T. (2008). “SQL-IDS: A Specification-based Approach for SQL-Injection
Detection.” SAC ’08. 2153-2158. Fertaleza, Ceara, Brazil.

12. Kiezun, A., Guo, P. J., Jayaraman, K., & Ernst, M. D. (2009). “Automatic Creation of SQL Injection
and Cross-Site Scripting Attacks.” ICSE ’09. 199-209. Vancouver, Canada.

w
w

w
.In

d
ia

n
Jo

u
rn

al
s.

co
m

M
em

b
er

s
C

o
p

y,
 N

o
t

fo
r

C
o

m
m

er
ci

al
 S

al
e

D
o

w
n

lo
ad

ed
 F

ro
m

 IP
 -

 1
15

.2
54

.4
4.

5
o

n
 d

at
ed

 2
4-

A
p

r-
20

19

Volume 5, Issue 1(A) • January - June, 2014 55

13. R. McClure and I. Kr¨uger. “SQL DOM: Compile Time Checking of Dynamic SQL Statements.” In
Proceedings of the 27th International Conference on Software Engineering (ICSE 05), pages 88–96,
2005.

14. S. W. Boyd and A. D. Keromytis. “SQLrand: Preventing SQL Injection Attacks.” In Proceedings of the
2nd Applied Cryptography and Network Security (ACNS) Conference, pages 292–302, June 2004.

15. T. O. Foundation. “Top Ten Most Critical Web Application Vulnerabilities, 2005”. http://
www.owasp.org/documentation/topten.html.

16. T. Pietraszek and C. V. Berghe. “Defending Against Injection Attacks through Context-Sensitive String
Evaluation.” In Proceedings of Recent Advances in Intrusion Detection (RAID2005), 2005.

17. Thomas H. Cormen, Charles E. Leiserson, Ronald L.Rivest and Clifford Stein, “Introduction to
Algorithms” MIT Press/McGraw-Hill, 2001.

18. V. B. Livshits and M. S. Lam. “Finding Security Errors in Java Programs with Static Analysis.” In
Proceedings of the 14th Usenix Security Symposium, pages 271–286, Aug. 2005.

19. V. Haldar, D. Chandra, and M. Franz. “Dynamic Taint Propagation for Java.” In Proceedings 21st
Annual Computer Security Applications Conference, Dec. 2005.

20. W. G. Halfond and A. Orso. “AMNESIA: Analysis and Monitoring for Neutralizing SQL-Injection
Attacks.” In Proceedings of the IEEE and ACM International Conference on Automated Software
Engineering (ASE 2005), Long Beach, CA, USA, Nov 2005.

21. W. R. Cook and S. Rai. “Safe Query Objects: Statically Typed Objects as Remotely Executable Queries.”
In Proceedings of the 27th International Conference on Software Engineering (ICSE 2005), 2005.

22. Y. Huang, S. Huang, T. Lin, and C. Tsai. “Web Application Security Assessment by Fault Injection and
Behavior Monitoring.” In Proceedings of the 11th International World Wide Web Conference (WWW
03), May 2003.

23. Y. Huang, F. Yu, C. Hang, C. H. Tsai, D. T. Lee, and S. Y. Kuo. “Securing Web Application Code by
Static Analysis and Runtime Protection.” In Proceedings of the 12th International World Wide Web
Conference (WWW 04), May 2004.

24. Z. Su and G. Wassermann. “The Essence of Command Injection Attacks in Web Applications.” In The
33rd Annual Symposium on Principles of Programming Languages (POPL 2006), Jan. 2006.

