

w
w

w
.In

d
ia

n
Jo

u
rn

al
s.

co
m

M
em

b
er

s
C

o
p

y,
 N

o
t

fo
r

C
o

m
m

er
ci

al
 S

al
e

D
o

w
n

lo
ad

ed
 F

ro
m

 IP
 -

 1
15

.2
54

.4
4.

5
o

n
 d

at
ed

 2
4-

A
p

r-
20

19

Generation of Convex Hull Using Neural Network
Technique

Ashish Kumar Nayyar*
Varun Sapra**

Abstract

The convex hull problem has had a long history going back to the beginning of computational geometry
and has been an intensively studied subject even up to the present day. The computation of the convex-
hull of a finite set of points, particularly on the plane, has been studied extensively and has wide
applications in pattern recognition, image processing, cluster analysis, statistics, robust estimation,
operations research, computer graphics, robotics, shape analysis, and several other fields. A convex-
hull based shape representation is suitable for classification and recognition of irregular objects because
it is invariant with respect to coordinate rotation, translation, and scaling.

Since 1970s, the problem of convex-hull computation has been an interesting area of research. As a
result, a wide variety of algorithms are available in the literature to solve this problem. Early papers
dealt primarily with the planar case d = 2. These wide varieties of algorithms were classified as (a)
computing exact convex hull and (b) computing approximate convex hull. They were also known as
sequential and parallel. Sequential means using a single processor for the computation and parallel
means using multiple processors for the purpose of computation.

This research aims in finding the solution of the convex hull problem using a neural network technique.
The convex hull problem is the problem of computing the convex hull of S and reporting the points on
the convex hull in the order in which they appear on the hull where S = {S[0], . . . , S[n – 1]} be a set
of n distinct points in the Euclidean plane. This problem has been solved efficiently using standard
methods but our research is confined to find a solution of the problem using neural network. Because
convex hull is basically a pattern recognition problem and neural networks are good at pattern recognition.

Keywords: Neural, Convex, Hull, Euclidean, Computation, etc.

Introduction
Computational Geometry
The term “computational geometry” was coined in
the mid-1970’s, geometry is one of the longest studied
mathematical areas because of its enormous number
of applications. With the advent of computers, which
could perform millions of mathematical calculations
per second, new topics and problems in geometry
began to emerge and the field of computational
geometry was born. As it evolved, a number of new
applications became apparent, ranging from computer
vision and geographical data analysis, to collision
detection for robotics and molecular biology.

Computational geometry studies the design and
analysis of algorithms for solving geometric problems.
One central problem that has received considerable
attention in the area is the problem of constructing
convex hulls. The importance of the problem stems
not only from its many applications (such as to pattern
recognition, statistics, and image processing) but
also from its usefulness as a tool for solving a
variety of problems in computational geometry.
The concept of convex hulls is well-studied in
mathematics and is appealing both mathematically
and intuitively.

The Convex Hull Problem

Given a set of planar points, the two-dimensional
convex hull problem is to find the convex polygon
with the smallest possible area which completely
contains all of the points. Let S = {S[0], . . . , S[n – 1]}

Ashish Kumar Nayyar*
IITM, New Delhi

Varun Sapra**
JIMS, New Delhi

w
w

w
.In

d
ia

n
Jo

u
rn

al
s.

co
m

M
em

b
er

s
C

o
p

y,
 N

o
t

fo
r

C
o

m
m

er
ci

al
 S

al
e

D
o

w
n

lo
ad

ed
 F

ro
m

 IP
 -

 1
15

.2
54

.4
4.

5
o

n
 d

at
ed

 2
4-

A
p

r-
20

19

52 IITM Journal of Management and IT

be a set of n distinct points in the Euclidean plane.
The convex hull of S is the minimal convex region
that contains every point of S. From this definition,
it follows that the convex hull of S is a convex polygon
whose vertices are points of S. For convenience, we
say that a point p to S is “on the convex hull of S” if p
is a vertex of the convex hull of S [3].

The convex hull of a finite point set S = {P} is the
smallest 2D polygon Ω (or polyhedron in 3D) that
contains S. That is, there is no other polygon (or
polyhedron) Λ with S ⊆ Λ ⊆ Ω. Also, this convex
hull has the smallest area and the smallest perimeter
of all polygons containing the set S.

Convex hulls find use in a number of different
applications including:

• Collision avoidance in robotics.

• Pattern recognition and digital image processing.

Fundamentals of Neural Networks

Neural Networks are relatively crude electronic models
based on the neural structure of the brain. The brain
basically learns from experience. It is natural proof
that some problems that are beyond the scope of
current computers are indeed solvable by small energy
efficient packages. This sweeping success can be
attributed to a few key factors:

• Power. Neural networks are very sophisticated
modeling techniques capable of modeling
extremely complex functions. In particular, neural
networks are nonlinear. Neural networks also keep
in check the curse of dimensionality problem that
bedevils attempts to model nonlinear functions
with large numbers of variables.

• Ease of Use. Neural networks learn by example.
The neural network user gathers representative
data, and then invokes training algorithms to
automatically learn the structure of the data.

Some Important properties of neural networks

• Trainability: Networks can be taught to form
associations between any input and output
patterns.

• Generalization: Networks don’t just memorize
the training data; rather, they learn the underlying

patterns, so they can generalize from the training
data to new examples.

• Nonlinearity: Networks can compute nonlinear,
nonparametric functions of their input, enabling
them to perform arbitrarily complex
transformations of data.

• Robustness: Networks are tolerant of both
physical damage and noisy data; in fact noisy data
can help the networks to form better
generalizations.

• Uniformity: Networks offer a uniform
computational paradigm which can easily
integrate constraints from different types of
inputs.

• Parallelism: Networks are highly parallel in
nature, so they are well-suited to implementations
on massively parallel computers.

Literature Review

The convex hull problem has had a long history going
back to the beginning of computational geometry and
has been an intensively studied subject even up to the
present day. The computation of the convex-hull of a
finite set of points, particularly on the plane, has been
studied extensively and has wide applications in
pattern recognition, image processing, cluster analysis,
statistics, robust estimation, operations research,
computer graphics, robotics, shape analysis, and
several other fields.

Since 1970s, the problem of convex-hull computation
has been an interesting area of research. As a result, a
wide variety of algorithms are available in the literature
to solve this problem. Early papers dealt primarily with
the planar case d = 2. These wide varieties of algorithms
were classified as (a) computing exact convex hull and
(b) computing approximate convex hull. They were
also known as sequential and parallel. Sequential
means using a single processor for the computation
and parallel means using multiple processors for the
purpose of computation. The birth of computational
geometry is often credited to Ronald Graham’s research
and subsequent 1972 paper titled “An efficient
algorithm for determining the convex hull of a finite
planar set.” His algorithm was a response to Bells Lab’s

w
w

w
.In

d
ia

n
Jo

u
rn

al
s.

co
m

M
em

b
er

s
C

o
p

y,
 N

o
t

fo
r

C
o

m
m

er
ci

al
 S

al
e

D
o

w
n

lo
ad

ed
 F

ro
m

 IP
 -

 1
15

.2
54

.4
4.

5
o

n
 d

at
ed

 2
4-

A
p

r-
20

19

Volume 4, Issue 2 • July-December 2013 53

request for a faster algorithm. They had to determine
the convex hull of ten thousand points rapidly, a
challenging number in the late 1960s with existing

O(n2) algorithms. Graham was hired and developed
what is now known as Graham’s Scan, an O(nlogn)
convex hull algorithm.

Some of the algorithms for solving convex hull problem

Table1: For Solving Convex Hull Problem

S.No Algorithm Speed Discovered By

1 Brute Force O(n3) [Anon, the dark ages]

2 Gift Wrapping O(nh) [Chand & Kapur, 1970]

3 Graham’s Scan O(n log n) [Graham, 1972]

4 Jarvis March O(nh) [Jarvis, 1973]

5 Quick Hull O(nh) [Eddy, 1977], [Bykat, 1978]

6 Divide and Conquer O(n log n) [Preparata & Hong, 1977]

7 Monotone Chain O(n log n) [Andrew, 1979]

8 Incremental O(n log n) [Kallay, 1984]

9 Marriage-Before-Conquest O(n log n) [Kirkpatrick & Seidel, 1986]

Proposed Algorithm

 In this research paper, we have developed an algorithm
for the construction of convex hulls. Conceptually
the algorithm is a connectionist implementation of
Gift Wrapping algorithm. We have implemented the
algorithm by a self organizing neural network.

A Self Organizing Map is a special class of artificial
neural networks based on unsupervised competitive
learning. It refers to the ability to learn from the input
without having any prior supervising information. A
Self Organizing Map inspects the input vectors for
some hidden patterns, and by cooperatively adjusting
the weights of output layer of neurons to make
localized response to the input data.

Algorithm

The algorithm for the construction of the convex hull
is as follows:

Step 1 Generate random points in a plane and find
the distance of each point from the left side of the
plane and set the initial weights as Wi(0) = Xj – Xk

Step 2 Find the winning Neuron, say either nearest
or farthest from the left side of the plane as it always
lie on the hull edge.

Step 3 Choose the point as a successor processor P(s)
and from Ps draw all possible edges.

Step 4 After finding the first hull vertex, now we need
to find the other vertex so that on joining these two
vertices we will get a hull edge.

(Selection of plane and the next hull vertex)

Step 4.1 Rotate the plane counter clockwise and again
find the distance of each node from current side.

Step 4.2 Select the minimum distance point and draw
an edge between the nodes and check whether the
edge is an upward edge or downward edge. An edge is
downward if its y1 is less than y2 and upward if y1 is
greater than y2.

Step 4.3 Now check if there is any other node lying
down to the line.

Step 4.3.1 Mark all those points whose value lies in
between the top values of the selected nodes.

Step 4.3.2 Move along the edge drawn in step 4.2
and if the top value of the node under check is achieved
but with lesser left value (X – Coordinate Value) on
that edge, then that node lies above that line.
(Applicable for Upward edges and for downward edges
if the top value of the node is achieved with less left

w
w

w
.In

d
ia

n
Jo

u
rn

al
s.

co
m

M
em

b
er

s
C

o
p

y,
 N

o
t

fo
r

C
o

m
m

er
ci

al
 S

al
e

D
o

w
n

lo
ad

ed
 F

ro
m

 IP
 -

 1
15

.2
54

.4
4.

5
o

n
 d

at
ed

 2
4-

A
p

r-
20

19

54 IITM Journal of Management and IT

value then that node lies down to the line.) Mark all
those points which lie down to the line.

Step 4.3.3 Out of the nodes which lie down to the
line select the node with minimum distance from the
previous side of the plane.

Step 4.3.4 Draw an edge between the newly selected
points and repeat steps 4.3.1 and 4.3.2 for any other
node lying down to the line keeping the side of the
plane constant.

Step 4.3.5 If no other such point lies then repeat step
5 to generate other hull edges.

Step 5 The resultant will be a convex hull polygon.

Conclusion and Future Work
Every neuron is computing independently, it takes
constant time. The next processor value is then

assigned to the node Hence it takes O(1) time. The
algorithm needs to selects the winner n number of
times as n are the number of hull processors. Thus
it takes O(n) time to compute (Best Case). (In worst
case)If the algorithm calls itself recursively for
the finding the points down to the drawn edge,
This leads to O(n) recursions, therefore overall it is
O(n2).

Future Scope: - In future scope, convex hulls can also
be computed in higher dimensional space. Further,
neural networks can be employed in convex hull
determination in N-dimensional space. Another active
area of research is in the development of efficient
parallel algorithms for convex hull computation. It is
beyond the scope of this thesis to extensively cover
the literature.

References

1. Mulmuley K., Computational Geometry (1993) “An Introduction Through Randomized Algorithms”.
Prentice-Hall, Englewood Cliffs, N.J.

2. O’Rourke J. (1994) “Computational Geometry in C”, Cambridge University Press.

3. Brionnimann.H, et al, Space-Efficient Planar Convex Hull Algorithms, Elsevier Science, This Research was
Registered under Contract 9801749

4. Agarwal P.K. (1994): “Applications of Parametric Searching in Geometric Optimization,” J. Algorithms, 17,
292–318.

5. Akl S.G. and Lyons K.A. (1993) “Parallel Computational Geometry.” Englewood Cliffs, NJ: Prentice-Hall,
1993.

6. V. Capoyleas, G. Rote, and G. Woeginger(1991) “Geometric Clustering,” J. Algorithms, 12, 341–356.

7. P.A. Devijver and J. Kittler(1982) “Pattern Recognition: A Statistical Approach”, NJ: Prentice-Hall.

8. Earnshaw R.A. (1988) “Theoretical Foundations of Computer Graphics and CAD,” in NATO ASI. Berlin,
Germany: Springer-Verlag, 40.

9. H. Edelsbrunner, D. G. Kirkpatrick, and R. Seidel(1983) “On the Shape of a Set of Points in the Plane,”
IEEE Trans. Inform. Theory, IT-29, 551–559.

10. Y. K. Hwang and N. Ahuja(1993) “Cross Motion Planning – A Survey,” ACM Comput. Survey, 24,
219–291.

11. F. P. Preparata and M. I. Shamos(1985) Computational Geometry: An Introduction. New York: Springer-
Verlag.

12. J. T. Schwartz and C. K. Yap, Eds.(1987), Advances in Robotics I: Algorithmic and Geometric Aspects of
Robotics. Hillsdale, NJ: Lawrence Erlbaum.

